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Abstract

This paper describes the formulation and numerical implementation of the J-integral applied to three-dimensional
thermoelasticity using a boundary element technique. The mixed-mode stress intensity factors has been evaluated
through a decomposition technique. In this technique, the J-integral is split into J', J™ and J™, associated to the three
basic modes of fracture. The decomposition technique is compared to the crack opening displacement technique. Good
accuracy was obtained in the mixed-mode test examples. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since its introduction as a fracture mechanics parameter, the stress intensity factor has gained wide
acceptance as a key parameter in the determination of crack behaviour in LEFM. Several techniques can be
applied in the calculation of stress intensity factors, in two and three dimensions, under thermo-mechanical
loads. One of these techniques is the crack opening displacement (COD) criterion, based on the extrapo-
lation of the displacement field in the vicinity of the crack front. Although this technique is easy to im-
plement, its main drawback is that a high level of mesh refinement is required to obtain accurate results.
Another prominent technique, for the characterisation of cracks, is the use of path independent integrals
based on conservation laws. The most widely known of these integrals is the J-integral of Rice (1968). Since
the introduction of the J-integral, some researchers have attempted to generalise this parameter to cha-
racterise singularities subjected to other kind of loads, such as inertia effects or thermal gradients. A number
of integrals have been developed which allows its use in thermoelastic fracture mechanics problems
(Ainsworth et al., 1978; Wilson and Yu, 1979; Kishimoto et al., 1980).
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The implementation of the J-integral in BEM was presented by Aliabadi (1990) for two-dimensional
elasticity and by Rigby and Aliabadi (1993) and Huber et al. (1993) for three-dimensional elasticity. Later
Rigby and Aliabadi (1998) presented a correct decomposition for mixed-mode problems. Recently, ap-
plication of the J-integral to two-dimensional thermoelasticity was presented by Prasad et al. (1994, 1996)
including steady state and time-dependant problems.

In this paper, the derivation of the J-integral for thermoelasticity will be presented. The integral, re-
sulting in a contour integral plus two area integrals, are decomposed using the symmetric and antisym-
metric thermoelastic fields. This decomposition allows mode I, II and III stress intensity factors to be
assessed as the integral is converted into the sum of three integrals (J',J",J™) associated to the three
modes of fracture. A method of calculating the values at internal points is presented and the kernels arising
from these new equations are listed. In the case of contour’s end points, where the point belongs to an
element, shape function differentiation is used in the evaluation of the required values. The implementation
of the integration in the three-dimensional DBEM is also presented. Finally, several examples are presented
to illustrate the accuracy and efficiency of the proposed technique.

2. The J-integral for thermoelasticity

Rice’s J-integral derives from Eshelby’s momentum tensor, which is

ous
Fj=Woy; — % B,

as was denoted by Amestoy et al. (1981) in which W is the strain energy density, o;; is the stress tensor and
uf is the elastic displacement field. All the parameters in this tensor are in terms of the crack front coor-
dinate system illustrated in Fig. 1.

Considering a generic contour C enclosing an area Q (Fig. 1) defined in the plane x; = 0 and taking into
account the following property of P; (Rigby and Aliabadi, 1998):

Pij,j = 07

the integral of P;; over any area €, excluding the crack singularity can be presented as

(1
\_{

Fig. 1. Contour perpendicular to crack front.
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where Q(C — C,) = Q(C) — Q(C,) denotes the area delimited by the contours C, C, and crack surface w.
Under thermal strains, the elastic strain tensor € is defined as
€ = €j — e (2)

ij?

where ¢; and ef)/ are the total and thermal strains, respectively. Substituting Eq. (2) into Eq. (1) yields

/ g (Wé Ou ) 4o+ / % qa =0 3)
0; Oij ~— =Y,
(C C/, a.xj k] j a (C*C/)) J a)Ck

where the thermal strains has no influence on the strain energy density W. Applying Green’s theorem,
which is

00 or B

and since dx; = —n,dI” and dx, = n; dI" (being n the normal to the contour I'), the following can be ob-
tained from Eq. (3):

ou; 0 ou; Oe;,
Wn, — 6;;—n; | dI’ — / (a, : ) dQ + / 0;—2dQ =0, 4
/F ( k / axk ) Q(c-c,) 6)(3 ox, axk Q(c-c,) 4 6xk ( )

where I' = C + C, + w represents the contour around the area Q(C — C,). Eq. (4) can be reordered as

Ou; 0 Ou; ¢!
I — d Q 740
| (W”" 7 ) ¢ / s (“’3 o ) o / %,
Ou; 0 Ou o€’
= — I — ! Q— i Q.
/cp (Wnk e Oy ) d / 6x3 (Gl} axk) d /Q(cﬂ 7 Oy d ©)

Taking the contour C, as a circular contour, being p the radius of the contour, the area terms in the
right-hand side of Eq. (5) will vanish as p — 0. The J-integral J is defined from Eq. (5) as

Ou; Ou; 0 Ou;
Jp = Wh, — o; dr = / (Wn — 0; ) dr — / <a, ! ) dQ
¢ /r/, ( ‘ ’6 ) Ct+o ¢ ’6 Q(0) 6x3 o Oy

a 0
+ / %5 % 40, (6)
Q(C)

where I', is a contour identical to C, but proceeding in an anticlockwise direction. The integral J; is defined
in the plane x; = 0 for any position on the crack front. Considering a traction free crack and taking £k = 1,
the contour integral over the crack faces w is zero. Accordingly, Eq. (6) becomes

Jl :/ (Wnl O',jg )dF
r,
Ou; 0 ou o0
== W — O dF i dQ ii —5['dQ, 7
/C( n O-Jaxl ) / a.)C3 (63ax1> +/(C>G’a6x1 / ( )

where the relation Eg' = 000;; has been employed. Eq. (7) is the three-dimensional version, in absence of
inertia effects and body forces, of the J; integral presented by Kishimoto et al. (1980). The path-independence
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of J; can be demonstrated from previous equation. Considering the contour I, held constant, the right-hand
side of Eq. (7) is constant for any contour C, i.e. the right-hand side is path-area independent.

3. Mixed mode J-integral

The integral J, is related with the three modes of fracture through the integrals J*, J and J™ as follows
(Cherepanov, 1979):

Jl :JI+JH+JIH, (8)
Jy = — 2V, ©)

Nevertheless, the use of J, will involve the integration of singular fields over the crack surface. In ad-
dition, Herrmann and Herrmann (1981) have demonstrated that J, is path independent only if the integral
of Wn, over the crack faces vanishes.

Rigby and Aliabadi (1998) presented another approach, known as the decomposition method, from
which the integrals J', J and J™ in elasticity can be obtained directly from J;, avoiding the use of J,. A
similar approach can be applied for decoupling the integral J; in Eq. (7), where the effect of thermal
gradients are also considered.

First, the integral J; is splitted into two parts:

Jy=J5 + I8 (10)

where J% and JAS are found from the symmetric and antisymmetric thermoelastic fields about the crack
plane, respectively. As the mode I thermoelastic fields are symmetric to the crack plane, the following
relationship holds:

JS :Jl JAS :Jll _"_Jlll'

The integrals J" and J™" can be obtained from J*% by making additional analysis on the antisymmetric
fields. Once obtained the integral J; as separated contributions of mode I, IT and III J-integrals, the stress
intensity factors can be calculated as follows:

Jl :JI +JII +JIII

1 1
- K KE) K an

being £* = E for plane stress and E* = E/(1 —1?) for plane strain.

4. Symmetric and antisymmetric components

The symmetric and antisymmetric components of the J-integral in Eq. (10), from the thermoelastic fields,
will be obtained in this section.

These fields can be obtained by considering two points P(x;,x,,x3) and P'(x;, —x»,x3), which are placed
symmetric with respect to the crack plane x, = 0, as illustrated in Fig. 2.

The symmetric and antisymmetric components of the temperature field can be obtained from the tem-
peratures at points P and P’ as

0° = 1(0p + 0p), (12)

0 =1(0p — 0p) (13)
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Fig. 2. Symmetric and antisymmetric components of stress at points P and P'.

being S and AS the symmetric and antisymmetric components, respectively, and where 0» and 0p are the
temperatures at points P and P'. Also, the temperature derivatives, can be obtained in the symmetric and
antisymmetric components from Egs. (12) and (13) as

0p | 00p
603 1 Qxy + Oxy
o a0p a@P/

B T2 [ (4
J a0p + 00
6)(3 0x3
a0p _ 0y
AS oxy 0xy
00 _ l a0p + 00p (15)
ax_ 2 0xy xy .
J 0p _ 0p
s xs3

The stresses at points P and P’ can be expressed in terms of the symmetric and antisymmetric compo-

nents as
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S AS
aup O11p —Oiip
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I12p —Ohp T12p
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our ) O L) 015 (17)

= S _AS (-

022p/ Oop/ Oo)pr
S AS
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The symmetric and antisymmetric stress fields can be found by combining the stresses at points P and P’
as follows:

S

o7, o11p + O11p
0?2 O12p — O12pP
073 :l O13p + O13p (18)
05, 2) onp+onp [’
033 G23p — O23p!
03, 033p + O33p/
Gﬁs giip — O11P
oy O12p + G1op
0/1\35 _ 1 g13p — 013p! (19)
0'925 "2 onp— onp
ey O3p + 023p
G%s 033p — O033p/
The strains can be represented by the sum of its symmetric and antisymmetric components as
€iip + €1p €1lp — €11P
€12p — €12P' €p t+ €12p
€ = E,-Sj + egs :% 2131) 1 €13p! +l €13p : €13p (20)
2p + €2p 2 | €xnp — €exp
€23p — €23p/ €3p + €3pr
€33p + €33p €33p — €33p/

The symmetric and antisymmetric components of the strain tensor are related to the displacements
derivatives as

1/ ou* auj.‘
x_ L i 21
61/ 2<6x,+6x,)’ ( )

where o = S or AS. From now, on the sub-indices P and P’ will be eliminated for simplicity, so f’ will
represent a field evaluated at P’ and f'will represent a field evaluated at P. The displacement derivatives can
be obtained (Rigby and Aliabadi, 1998) from Eq. (21) as

Ou;  Ouf  Oups

axj_ axj @xj

qup , O duy u}
T oy
1 8 oul 1 3 A,

— ) 9w T + = Qup + 2 5. (22)
2 x; O 2 Ox; Ox;

Ox; Ox; Ox; Ox;
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Eq. (7) can be written using the symmetric and antisymmetric components of the fields derived in Egs.
(14)—(22) as

Ji = /C { [/0 ’ (Gf/ + af]\fs> d(e?j + ef]fs)}nl — (afj + ags)njai;l (u} + uf‘s)}df
_ O s oasy O (s oas / s, as\ O (ps | pAsys
/Q(C) o3 [(053 t03 )axl (f +u®) | dQ + o OC(GU + 05 ) o (6° + 0°°)5,dQ, (23)

where the definition of W = [;” ;;de; has been used.

Considering a contour C symmetric about the crack plane x, =0, we can find that for any pair of
symmetric points P and P’, the following relation holds for the normals n and n':

n= (nlanZaO)a l'l/ = (nlv_nZaO)a

and for the integrands in Eq. (23),

0;;4 de;f = +o}; deg, (24)
o aa‘)‘flﬁ — +o%n, 22? , (25)
ol %L;:f = ta¥; Z?j , (26)

” %Lxllﬁ =+, %Zf . (27)

being a, f = S or AS. The positive sign in the right-hand side of Eqs. (24)—(27) represent the case o = ff and
the negative sign the case o # f. As the contour Cis taken symmetric about the crack plane, the integrals in
Eq. (23) cancel each other at symmetric points for the case o # f. Thus, Eq. (23) becomes

2 ) , "
ou” 0 ou” 00
Si=> Wen, — 6% —Ln; dF—/ —<a? ’)d9+/ clo—dQ = J5 + JMS, 28
: g /c< Py j) o(c) Ox3 \ 7 xy ac) 10X 28)

where o = 1, 2 denotes symmetric, S, and antisymmetric, AS, components, respectively. As was stated
before, mode I correspond to the integral JS while the integral JS is related to modes II and III. The
integral J; will be decoupled into mode I, IT and III terms in Section 5.

5. Decomposition of integrands

In this section, the integrands of integral J; will be decomposed into their mode I, IT and III components.
Being the symmetric components representative of mode I, the decomposition method will involve a further
decoupling of the antisymmetric components into modes II and III.

The decomposition of stresses represented by

111

. | 11
0y = 0, + 0y + 0y

has been given by many authors (Nikishkov and Atluri, 1987; Shivakumar and Raju, 1990; Rigby and
Aliabadi, 1993; Huber et al., 1993). Recently, Rigby and Aliabadi (1998) gave the proper decomposition of
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stresses, since they showed that the expressions used in previous papers were incorrect. So, the correct
decomposition of stresses is as follows:

_ 1 11
0j=0,;+0,;+0

ij
o1 + 0,
012 — 07,
o13 + 05
0 + 0%
023 — 0/23

/
033 + 0-33

111

o1 — oy
012 + 0},
0
02 — 0’22
0

/
033 — 0-33

0
0

o13 — 073
0

023 + 0
0

(29)

The strain decomposition is derived from stress and temperature decomposition by the application of

Hooke’s law for thermoelasticity, which is

v
—0ij — Eakk&-j + 05061:/'

by combining Egs. (13) and (29) into Eq. (30), e.g.,

1+v
€j = E
0 _1+v
=g %

This leads to

_ 1 11
€j = €; T €; T €

i
iy
€1+ €}
€12 — €]y
€13 + 6/13
€ + €y
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’
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; v
-oy) -5

(0w — o) + zx(@ — 0’)
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€12+ €}
0
€2 — 6/22
0

’
€33 — €33

1

!
€13 — €13
0

!
€23 1+ €3
0

= E (611 — 6/11).

(30)

(31)

(32)

The mode I, IT and IIT displacement derivatives can be derived from Eq. (32) by using the relation
between displacements and strains as

61/[,' - auII

an o axj
where
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The decomposition of the antisymmetric components of temperatures can be achieved from Egs. (27)
and (29). Since the antisymmetric component of a4, only affects mode II (Eq. (29)) and by virtue of Eq. (27),
the temperature decomposition can be written as

0=0"+0" (37)

being 0' = 0%, 0" = 0*° and 0™ = 0. The temperature derivative can be decomposed from Egs. (12), (13)
and (37) as

%—6_914_@4_%1“—1 %_'_a_g, _|_l %_6_0/ +0 (38)
a)ﬁ h axl 6)(1 6x1 a 2 axl axl 2 6x1 6x1 '
Returning to the J-integral in Eq. (28), the integrand on the first domain integral can be replaced by
0 ( ,0ur\ Qdof0ur , Ou
3 axl B 6x3 6x1 3 6x16x3

for o = S or AS, and since the symmetric and antisymmetric fields exhibit equilibrium of forces (Rigby and
Aliabadi, 1998), the following holds:

Gl oc}, = Oc%
i3 _ _ i i . 4
aX3 ( axl + 6x2 ) ( 0)

By replacing Egs. (39) and (40) into Eq. (28) and by applying the thermoelastic fields decoupled in Egs.
(29)-(38), the mode I, IT and IIT J-integral, which allows the characterisation of cracks under thermo-
mechanical loads, can be written as

ou” dg*  0c% \ Ou” % u”
J*r = Won, —o*—Ln. | dI’ il i2 L dQ — / o i dQ
/c ( % Ox n,> * /Q(C) ( Ox; * 0x, ) O Q) 7 0x10x3

+/ a;aae'dg, (41)
ac) 1 Ox

where o« = I, II, III. In the absence of thermal gradients, the integral in Eq. (41) reduces to the integral
quoted by Rigby and Aliabadi (1998) for three-dimensional elasticity. The stress intensity factors can be
obtained from the above integral using Eq. (11).

™~ (39)

6. Thermoelastic fields at internal points for J-integral

The thermoelastic variables and their derivatives are required at internal points for the implementation
of the J-integral in Eq. (41). All the kernels arising are listed in Appendix A.

The temperatures 0(X') at an internal point X', necessary for the calculation of internal stresses in Eq.
(41) (dell’Erba et al., 2000), is

0(X') — /r ¢ (X, x)0(x)dI'(x) = — /r 0" (X', x)q(x)dI'(x). (42)
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The temperature derivatives are also required for the calculation of the area integral and stress deriv-
atives in Eq. (41). The temperature derivatives at internal points, can be obtained by deriving Eq. (42) with
respect to the coordinates x;, as

04(X) = [ ai' (X x)0x)drx) = = [ 07 (X x)a(x)dI (x). (43)

The displacement derivatives Ou,;/0x; at an interior point X' can be calculated from the displacement
equation for interior points (dell’Erba et al., 2000) by differentiating with respect to the coordinates x;. It
can be written as follows:

mmwlmmwmmn>/nmm<ww
— [ U X640 - [ BulX' x)ax)dr). (44)

The area integral in Eq. (41) also requires the second derivatives of displacements 0u; /dx;0x,, which can
be achieved by differentiating Eq. (44) with respect to the coordinates x,,, as

ui‘km(x/)Jr/rﬂj‘km(X/ x)u;(x)dI(x) — /_,km(X’ x)0(x)dI(x)
_ /r Uy (X', X) / 0, (X' x)g(x) AT (x). (45)

The stress tensor o;;(X’) at internal points X' can be written as (dell’Erba et al., 2000):

<mm+Ammwmmux>/Em/w>wm+gémwwm

/r Ui (X', X) 8 (x / 0,(X',x dr(x), (46)

where the temperature 0(X’) is obtained from Eq. (42).

For the calculation of the area integral in Eq. (41), the derivatives of stresses o;;,, are required at internal
points X'. By differentiating Eq. (46) with respect to the coordinates x,,, the equation for stress derivatives at
an internal point X' can be obtained as

meﬂﬁmmeMﬂm)/EM&)UM®+F%W%WW

/F Usijm (X', X) 11 (X / 0,.,(X',x)q(x)dI'(x) (47)

being the temperature derivative 0,(X’) obtained from Eq. (43).

The J-integral in Eq. (41) requires all the internal values defined in terms of the local crack coordinate
system shown in Fig. 3. All these quantities are calculated in the global coordinate system and then
transformed into the local coordinate system using standard transformation equations for Cartesian vec-
tors and tensors as

94’ = aije,j; Uij = QAU 1,  Uijk = AiAjmAnUlmn,  Oij = AikQji0k1,  Oijk = AilQjmQn0Imn, (48)

where g;; is the local transformation matrix given by the directional cosines of the unit vectors along the
local axis X, X, and X; depicted in Fig. 3.
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Local system

Crack face

Xs X

Global system

Fig. 3. Global coordinate system, local coordinate system and J contour.

7. Numerical implementation

The J-integral technique has been included as a post-processing technique, so it can be applied to the
results of a particular model at a later stage to obtain stress intensity factors for different positions along the
crack front. The necessary values at internal points for the calculation of the J-integral are calculated from
Eqs. (42)—(47) by applying the boundary values 0(x), g(x), #;(x) and #;(x) previously calculated at boundary
points x. The internal values, which are in the global coordinate system, are transformed into the local
crack coordinate system for a particular position on the crack front by using Eq. (48). Finally, the fields
associated to modes I, IT and III are integrated separately to obtain integrals J', J™ and J™ from which the
values of stress intensity factors are calculated.

In the next sections, the procedure adopted for calculating the contour and area integrals and for cal-
culating the values over the crack faces (e.g. end points of the contour) will be explained in detail.

7.1. Contour and area integration

The procedure adopted in this work for the evaluation of contour and area integrals is similar to the one
presented by Rigby and Aliabadi (1993) for the J-integral evaluation in three-dimensional elasticity in
BEM.

The strategy can be described, with reference to Fig. 4, as follows:

(1) A contour of radius r, centred at a point O in the crack front, is placed perpendicular to the crack
front. The area enclosed is divided in an even number of area segments.

(2) The internal points, where the internal values will be calculated, are located in concentric arcs of
radius /3, 2r/3 and r in the fashion illustrated in Fig. 4.

(3) For internal points such as these belonging to the area segment highlighted in Fig. 4 (4 — J) and their
symmetric counterpart (B’ — J'), the internal values required for the calculation of J-integral, are calculated
by integrating Eqs. (42)—(47) around the surface of the body, including the crack faces.



4620 D.N. dell’Erba, M.H. Aliabadi | International Journal of Solids and Structures 38 (2001) 4609-4630

D Area segment

Fig. 4. Distribution of internal points for contour and area integration.

(4) For points such as L — N and L' — N’, the required values are obtained by differentiating the shape
function within the element. This will be explained in detail in Section 7.2.

(5) All the points are placed symmetrically with respect to the crack plane, e.g. the point B is symmetric
to the point B’. By combining the results at symmetric points, the integrands for J', J' and J™ can be
obtained. Since all the integrands are symmetric with respect to the crack plane, the integration is carried
out only for the top area and then multiplied by 2.

(6) The contribution to the contour integral from the segment highlighted in Fig. 4 is found by applying
the four point Newton—Cotes formula to the contour integrands at points 4 — D.

(7) The contribution to the area integrals from this segment is obtained via line integrals. First, line
integrals are calculated for the three arcs in the segment. A line integral L, is obtained by applying
Simpson’s rule to the area integrands at points H —J in the inner arc. Simpson’s rule is also applied to
points £ — G in the middle arc to produce a line integral L,. The line integral L; in the outer arc is calculated
from the area integrands at points 4 — D using the four point Newton—Cotes formula. Considering that the
integral of the area integrands over an area Q(¢) will tend to zero as ¢ — 0, a line integral Ly = 0 is assumed
from the integration over an arc of » = 0 (point O). Thus, since the arcs are equally spaced, the total area
integral contribution from the area segment can be calculated from the four line integrals Lo, L, L, and L3
by using the four point Newton—Cotes formula, yielding

r r
-8 8

which is equivalent to find the integral of the area integrands /5 by

0, r
JA = / / IArdrdH.
0 0

Finally, the stress intensity factors are calculated from Eq. (11) as

Ky =VEJ, Ky=VEJL, Kn=2wm.

JA (Lo + 3Ly + 3Ly + L3) =< (3L, + 3L, + L3),

7.2. Values at end points

As shown in Fig. 4, the path of the contour intersect the crack faces, e.g. at points L and L', where the
values of the contour and area integrands are also required. Since the point is on the boundary, it will be
within one of the boundary elements and, therefore, the calculation of the internal values by integrating
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Eqgs. (42)—(47) is singular when integrating in this element. One way to obtain these values is by differen-
tiating the shape functions in the element which contains the point (Aliabadi and Rooke, 1991). Alter-
natively, these values can be calculated using Eqs. (42)—(47) and performing the singular integration within
the element that contains the point. The former approach is used in this work (see Appendix B).

8. Elliptical crack in an infinite solid

The numerical example consist of an elliptical crack in an infinite solid. The geometry is illustrated in
Fig. 5 and a plan view of the crack is included for which the ellipticity is 0.5.

Other geometrical relations were chosen as a/R = 0.05 and #/R = 6.0 in order to simulate the conditions
of a crack in an infinite solid. The material parameters were taken as E = 2.1 x 10° MPa, « = 1.65 x 107°/°C
and v = 1/3 for all the examples and the results are independent of the thermal conductivity 4. Two different
set of boundary conditions were applied and the results are compared with analytical solution given
by Kassir and Sih (1967). For comparison, the solution obtained using the COD formulae, has also been
included.

8.1. Case 1: symmetric boundary conditions

In this case, all the surfaces were maintained at constant temperature, i.e.,

0y = 100°C on the crack surfaces,

0c = 0°C on the remaining surfaces,

and all the surfaces of the model are traction free. The stress intensity factor was normalised as K| = K /F,
where F' = 4uaby/b/n. The results for K as a function of the angle § (Fig. 5) compared with the analytical
and the COD solution is shown in Fig. 6.

As can be seen from Fig. 6, there are good agreement between the numerical and analytical results.

C/ Plan view
X3
X2
b B X1
\_\_y

X1 h

Fig. 5. Geometry of an elliptical crack in a circular cylinder.



4622 D.N. dell’Erba, M.H. Aliabadi | International Journal of Solids and Structures 38 (2001) 4609-4630

14

04 +
—— Theoretical
02 + a COD - Special elements
) w ] integral
0 } f } f f
0 15 30 45 60 75 90

Angle around crack front (deg)

Fig. 6. Mode I stress intensity factor for an elliptical crack in an infinte domain.

8.2. Case 2: antisymmetric boundary conditions

In this case, the surfaces of the crack were insulated and a temperature gradient was set-up, perpen-
dicular to the crack faces. The gradient arise from the temperature difference between the top and bottom
surfaces of the cylinder. The boundary conditions are

qo = 0 on the crack surfaces and the external surface of the cylinder,

0y = =+ 300°C on the top and bottom surfaces of the cylinder,
and all the surfaces of the model are traction free. For an elliptical crack, the antisymmetric boundary
conditions generates a combination of Kj; and Ky which occur simultaneously. The stress intensity factors

are normalised as Kj; = Ky;/F and K;j; = K /F, where F = 8ua0yb*? /3h+/m. The results for K;; and K, are
presented in Figs. 7 and 8, respectively, and compared with the analytical and the COD solution.

9. Semi-elliptical surface crack

The geometry is illustrated in Fig. 9 for which the relation a/b = 0.5 was chosen. The crack was insulated
and a uniform thermal gradient was set-up in the direction of the X axis by prescribing a temperature
difference at the faces of the bar. The following boundary conditions were applied:

0; = —100 in the plane X =0,
0, =100 in the plane X =T,

g = 0 in the remaining surfaces,
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Fig. 7. Mode 11 stress intensity factor for an elliptical crack in an infinte domain.

0.5

—— Theoretical
a COD - Special elements

04 » ] integral

>

03 +

KIIT*

02 +

0 + : : : %
0 15 30 45 60 75 90
Angle around crack front (deg)

Fig. 8. Mode III stress intensity factor for an elliptical crack in an infinte domain.

and the top and bottom surfaces of the bar (¥ = £L) were held against normal displacement. Results for
normalised stress intensity factors are presented in Fig. 10, where K* = K /aETyv/W.
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-
a/W=0.5

L L/ W=2
T/W=2

Fig. 9. Semi-elliptical surface crack in a bar.
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Fig. 10. Stress intensity factors for a semi-elliptical surface crack under thermal gradient.

10. Conclusions

The J-integral for three-dimensional thermoelasticity was presented for analysis of mixed mode ther-
moelastic crack problems. The main conclusions on the derivation and implementation of the J-integral are
as follows.
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o It was found that eight subdivisions are necessary to achieve convergence of results.

e The optimum contour radius r was found as 0.3 <r/a<0.7 for the penny-shaped crack case.

e Special care must be taken when considering a combination of small contour radius and high number of
subdivisions, as near singularities which may arise from this combination can affect the values at internal
points close to the crack surface, and consequently affect the obtained results.

e The J-integral has been proved to be accurate for stress intensity factor assessment. Values for K has
been found to be within 2.2% difference of analytical values. Less accurate results were obtained for
Ky and Ky values, when compared with analytical results. This discrepancies can occur because even
a small error in the temperature values produce large differences in stresses.

Appendix A

In this section, the kernels for the boundary integral equations presented previously, for the calculation
of the J-integral are given. The kernels will be obtained in the global coordinate system (x;,x,,x3) illustrated
in Fig. 3. Derivatives of kernels differentiated with respect to the global system includes all the components,
since they will be necessary for the subsequent transformation into the local coordinate system.

The kernels 67" and ¢* in Eq. (43), are obtained by differentiating those in Eq. (42) with respect to x;,
as

7
0»(;* X/ — 5L Al
XX = - (A1)
! 1
q; (X', x) = P (377 ki — ny] (A2)
being 4, the thermal conductivity.
The kernels T4, Uyx, Pix and O, in Eq. (44) are
, 1 or
T;'j,k(x7x) = —m (1 —2\/) 37"‘]( 51'1'&—'—}"]*7’1,*—7’1,'71]‘ —5ijnk—5jkni—|—5iknj
+ 321 (Srtir‘jr‘k — 5,’](}",]‘ — 5]'/(7”‘,') — 3”/(7”‘,'7"1'}, (A3)
n
: (1+v)
Uyr(X', x) = 8nE(1 — )2 (3= 4v)dyrs + 3rryri — Oprs — dar], (A.4)
P (X,X)—M @(5 = 3rr) +mr + (A.S)
ik ) - 87'[(1 — v)r2 on ik Gk ki il k| .
— a(l +v)
(X X) = ————[rrs — Sl A.
Qz,k( ,X) STE(I — V)F [rﬁtrtk zk} ( 6)

The kernels (A.3)-(A.6) are differentiated again to obtain the kernels 7}, 4, Uijjm> Pim and Q-’km of Eq.
(45) as
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, 3 or
]:jkm(X ,X) = — m {(1 — 2V) |:5V_’k7"m <5Ua+ l"’jni — I"ﬁinj>

+ ¥y (5ik”j - 5jkni - 5ijnk) + 7y (5imnj - 5jm”li - 5ijnm)

or or
+ 5km (V}ii’lj —rn — 5,]6”>:| + & [35}’",'7"1'}",1(1’7,,1
- Sr«,i (5jmr,k + 5kmrj + 6jkr,m) - Sr,j(éimr,k + 51’1(’1»1)

+ 0l + 5ik5/;n] + ng (5imr,/ + Ojmli — 57’,1‘”,,/”,»1)

+ 1y (5ik7’,j +0uri — 5”,i’”,j7’,k) }a (A7)
) 1+v)

U,-j‘km(X ,X) = m {37‘1/{7'1,,, [511(3 — 4V) + 57‘71-7‘,1-]

=37 (0t + Opl; + Oimt i) — 37 (5,/k7’,m + 5jmr,k)

+ 5im5/'k + 5ik5jm - (3 - 4V)5ij5km}a (A~8)
— ;o ol 4) or
P (X', X) = m 3&(51‘1{’% + Ol ke + Opls — STiT 47 1)

+ 1, (3775 — Ou) + k(377 — Oim) + 1,37 47 s — Otm) | (A.9)
— , a(l +v
Qi,km (X 7X) = 87'[((1 . V))I’Z [3r¢ir,krm - 5kmr,i - 5imrk - 5ikrm}' (AlO)

The kernels Ti;ms Usijms Pijn and O
and they are listed below:

in Eq. (47) are obtained by differentiating the kernels in Eq. (46)

ijm

, 3F or
Tkij,m(X ,X) = m { a [(1 — ZV)éij(Sr’k}’?m — 5km)

+ v[é,»k (Srﬂjr‘,m - 5jm) + 5jk(5r7ir7m - 51m)}

+5 [r_y,» (rd-(sk,,, + PO — 7r‘jr_ykr1m) + 5,~mr‘jr>k]]

+ (1 = 2) [ (Bin; + Sni) + mic (5777 — Oyl — Siml ;)
— 5,-jr‘knm] +v [Srykr,m (ryjn,- + r‘,»nj) —n; (5kmr,j + 5/-,,,}{,()

— (5,-er- + 5jkr,,~) — 1 (Opmr; + 5,~mr,k)]

+ S5riryryn, — (1 — 4v)5ijr7n1nk}, (A.11)
, 1
Ukij,m (X 7X) = m {(1 — 2V) |:3I"_’m (51*](7‘_’]' =+ 51'](]”7,* — 51‘]']”‘]() - 5ik5jm - 5jk5im
+ 5tj5km] +3 [V,i(sr,j”,ki’,m — 7 Om — I"kéjm) — 5,‘,,,7‘1{1’,]] }, (A.12)

— , Eo or 51" 5,"
PijA,m(X ,X) = 87‘[(1—\))}/‘3{3671 |:}"$m<1 _j2v — 5}"7[}"‘]') —+ 51',,17'71' —+ 5,-,,1}’4} +I’lm <3r,,‘r,j — 1 _fzv)

+ 1 (37 7 — Oim) + 1y (3751 — 5,-,,,)}, (A.13)
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—= y Eo S
Qij,m(X aX) = m 3r,ir‘jr,m - 6jmr,i - 5imr.j - 1 _jzv Fom |- (A14)

Appendix B

In this section, the values at end points are obtained. First, the position of the point within the element
must be found in terms of the local intrinsic coordinates (&, 7). Using the radius of the contour, the position
of a point x; located just above the element can be calculated. The position x, of the nearest point to the
element can be obtained from the following equations:

being r = xp — X;. When r is perpendicular to tangents Or/0¢ and Or/0y, the dot product in the above
equations is zero and X, results the projection of x; on the element. Because of the non-linearity of the
above equations, they can be solved with a Newton—Raphson scheme leading to the intrinsic coordinates &,
and #, of the nearest point on the element. The initial solution for the iterative scheme is set to the intrinsic
coordinates of the nearest node to x,.

Once the point x, is located on the element, the shape functions M* (¢ = 1,8) and shape functions
derivatives 0M*/0& and 0M™/0n are found for the intrinsic coordinates &, #,. Since several derivatives and
second derivative values are required, the way of obtaining them will be explained generically for a function
f and then particularised in each case.

By virtue of the chain differentiation rule, the following can be written:

of of Ox; of _ of Ox;

0 ax, 08’ on ox o’

where j = 1,3. As the element is on the crack plane, its normal is parallel to axis x,, as a consequence
0x,/0& = 0x,/0n = 0 and the above relation reduces to

o ) (2
e | ) e @ )
¥ (TYwm ()
n on ] 0x3
from which the derivatives in the local crack coordinate system can be calculated as

o | o _wm) (¥

] _ on o¢ o (B 1)
O T @ s _dydn) % u( '
Ox3 o o on o on [ on

where the derivatives respect to the intrinsic values are evaluated as

6M“ aM‘
Z Z

=1

So, the required derivatives can be found by adequately setting the function to the required thermoelastic
variable.

The stresses are calculated from the values of tractions and tangential stresses at boundary points as
given by Aliabadi and Rooke (1991). In this work, this procedure is extended to thermoelasticity. A local
coordinate system is defined such that e are components (directional cosines) of the unit vectors of the
orthogonal system of axes defining a coordmate system x° as shown in Fig. 11.

If u?, € u’ a and ¢ are the displacements, strains, stresses and tractions, respectively, in the local system
of coordmates and 0 are the temperatures, the stress components 63, can be expressed as
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Fig. 11. Orthogonal coordinate system at the surface.

0 _ .0
03 =1,

i=1,3,
and from Hooke’s law for thermoelasticity

dy — Maeaﬁ] (B.2)

Jij = 2,Lt |:€ij =+ 1 — 2\)

v
1—2v
making ¢%; = £ yields

1 1—2v
S=1— {ng —v(e) +ey) +(1+ V)“H}-

Eliminating €, from Eq. (B.2) leads to
0 1

=1 {ve} + 2ule], + ved, — (14 v)al] },

1
al, = — {ve) + 2ule), + vel, — (14 v)ad] }, (B.3)
oYy = 2y,

The displacements and tractions, are related to the local coordinate system via the transformation matrix
eg., as follows:
0_ 0 0_ 0
u; = euuj, L = el

The surface representation using shape functions is
m
X =Y M(&n)X
o=1

from which the two tangent vectors at a surface point (&, 7,) are given by

ox ZL OM*(&,n) ox 2 OM*(&,n)
- E XO{? g(§07 1/]0) = = § :

o¢ &=¢o o=1 o¢ &=¢o 67/ =& a=1 a’/’ =4y

=10 =10 =1 =10

h(&y,ny) =

and the outward normal vector as the vector product of these two vectors, as

d(foﬂ?o) = h(foﬂ?o) X g(éOv ’70)

The local orthogonal unit vectors are defined by
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N — hi(os o) & = gi(&o: o)
Y h(Co, mo)| 2 g o)l
1 hi(So, o)
eo‘zihéan giévn _h‘évng'éanli}%O?
3i |d<£05n0)| | ( 0 0)| ( 0 ()) /( 0 0) /( 0 O) \h(foﬂo)\
where |[h(&o, 1) = Vhihi, |8(Eo,110)| = /gigi and |d(&y, ny)| = V/did;. From Fig. 11, it is possible to relate the
intrinsic coordinates (&,7) to the surface tangential directions (x!, x3) as
1 1
f=————[x? =Xl tan"! o], n=———[xsin" ¢l.
th(So, 10| [ b } 12(So, o) | [ ? ]
Differentiating ¢ and n with respect to xJ, and xJ yield
%:; a_]’]: %:;tanflq) a_n:;sinil(p
ax)  [h(&,mo)l’ ox! oxy  [h(&,no)l 7 oxy  [g(&,mo)l

The strain tensor in the local coordinate system and the temperature at point (&y,7,) can be evaluated
as
o 1 [ou ouf (o) 9 Quf dp Quj df  duy oy

€. = 4L ) ==

P\ @ T ) 2\ T & of &) dp ax? )

(B.4)

0= S M (G )07, (B.5)

o=1
where the derivatives with respect to the intrinsic coordinates (£, #) are

) _ NG 0 O SO

— 7/ — o\ O,a
o i 6’7 617 U;

o

=1

=1

Substituting Egs. (B.4) and (B.5) into Eq. (B.3) leads to the stress tensor in the local coordinate system.
Finally, the stress tensor in the global coordinate system is obtained from the transformation,

_ 0 0 0
0ij = €i€,i0 -
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